Plant Functional Genomics Laboratory, IIT Jodhpur
Publications
फलेन वृक्षम परिचायते
कर्मण्येवाधिकारस्ते मा फलेषु कदाचन
31. Jangir N, Marik D, Verma D, Dey A, Shekhawat RS, Yadav P, Sankhala K, Sadhukhan A* (2024) Nano urea outperforms equimolar bulk urea in the hydroponic growth of Arabidopsis thaliana by inducing higher levels of nitrogen assimilation and chlorophyll biosynthesis genes. Journal of Plant Growth Regulation. https://doi.org/10.1007/s00344-024-11581-8. *corresponding author (5-yr impact factor 4.7)
30. Dey A, Sadhukhan A* (2024) Molecular mechanisms of plant productivity enhancement by nano fertilizers for sustainable agriculture. Plant Molecular Biology 114:128 https://doi.org/10.1007/s11103-024-01527-9 *corresponding author (5-yr impact factor 4.6)
29. Dey A, Jangir N, Verma D, Shekhawat RS, Yadav P, Sadhukhan A (2024) Foliar application of nano urea results in higher biomass, chlorophyll, and nitrogen content than equimolar bulk urea through differential gene regulation in Arabidopsis thaliana. bioRxiv https://doi.org/10.1101/2024.09.03.611005
28. Dhiman V, Marik D, Amrita, Shekhawat RS, Swain AK, Dey A, Yadav P, Pal A, Dey S, Sadhukhan A* (2024) AP2/ERF Transcription Factor Orthologs of the Desert Tree Prosopis cineraria Show Higher Copy Number and DNA-Binding Affinity than Drought-Sensitive Species. Journal of Plant Growth Regulation https://doi.org/10.1007/s00344-024-11532-3 *corresponding author (5-yr impact factor 4.7)
27. Dhiman V, Biswas S, Swain AK, Sadhukhan A, Yadav P (2024) Deep learning-based method to identify disease-resistance proteins in Oryza sativa and relative species. bioRxiv https://doi.org/10.1101/2023.11.25.568625
26. Dhiman V, Biswas S, Shekhawat RS, Sadhukhan A, Yadav P (2024) In silico characterization of five novel disease‑resistance proteins in Oryza sativa sp. japonica against bacterial leaf blight and rice blast diseases. 3 Biotech 14(48) https://doi.org/10.1007/s13205-023-03893-5 (Impact Factor 2.9)
25. Marik D, Sharma P, Chauhan NS, Jangir N, Shekhawat RS, Verma D, Mukherjee M, Abiala M, Roy C, Yadav P, Sadhukhan A* (2024) Peribacillus frigoritolerans T7-IITJ, a potential biofertilizer, induces plant growth-promoting genes of Arabidopsis thaliana. Journal of Applied Microbiology, lxae066, https://doi.org/10.1093/jambio/lxae066 (5-yr Impact Factor 4.0) *corresponding author
24. Srivastava R, Marik D, Meher S, Sahoo L, Sadhukhan A* (2023) Understanding the facets of extreme land plant adaptation from transcriptomics. Chapter 3 In Book: Transcriptome Analysis and Why it Matters. Mishra M (Editor) Nova Science Publishers NY https://doi.org/10.52305/WKXY5300 *corresponding author
23. Hiranmayee G, Marik D, Sadhukhan A, Siva Reddy G (2023) Isolation of plant growth-promoting rhizobacteria from the agricultural fields of Tattiannaram, Telangana. Journal of Genetic Engineering and Biotechnology 21 (1): 159. https://doi.org/10.1186/s43141-023-00615-5 (Impact Factor 3.2)
22. Abiala M, Sadhukhan A, Muthuvel J, Shekhawat RS, Yadav P, Sahoo L (2023) Rhizosphere Priestia species altered cowpea root transcriptome and enhanced growth under drought and nutrient deficiency. Planta (2023) 257:11 https://doi.org/10.1007/s00425-022-04047-2 (Impact Factor 3.6)
21. Srivastava R, Sadhukhan A, Hoyama H (2023) Aluminum stress tolerance in plants: insights from omics approaches. Chapter 4 In Heavy Metal Toxicity and Tolerance in Plants: A Biological, Omics, and Genetic Engineering Approach. Hossain MA, Hossain AKMZ, Bourgerie A, Fujita M, Dhankher OP, Haris P (Editors) Wiley Blackwell Publishers (ISBN: 978-1-119-90646-9) https://doi.org/10.1002/9781119906506.ch4
20. Abiala M, Sadhukhan A, Sahoo L (2023) Isolation and Characterization of Stress‑Tolerant Priestia Species from Cowpea Rhizosphere Under Drought and Nutrient Deficit Conditions. Current Microbiology (2023) 80:140 https://doi.org/10.1007/s00284-023-03246-8 (Impact Factor 2.6)
19. Kumar S, Muthuvel J, Sadhukhan A, Kobayashi Y, Koyama H, Sahoo L (2022) Enhanced osmotic adjustment, antioxidant defense, and photosynthesis efficiency under drought and heat stress of transgenic cowpea overexpressing an engineered DREB transcription factor. Plant Physiology and Biochemistry 193: 1- 13 DOI: 10.1016/j.plaphy.2022.09.028 (Impact Factor 6.1)
18. Sadhukhan A*, Prasad S, Mitra J, Siddiqui N, Sahoo L, Kobayashi Y, Koyama H (2022) How do plants remember drought? Planta 256(1):7. https://doi.org/10.1007/s00425-022-03924-0 (Impact Factor 3.6) *corresponding author
17. Kumar S, Das M, Sadhukhan A, Sahoo L (2022) Identification of differentially expressed mungbean miRNAs and their targets in response to drought stress by small RNA deep sequencing. Current Plant Biology 30: 100246. https://doi.org/10.1016/j.cpb.2022.100246 (Impact Factor 5.4)
16. Agrahari RK, Enomoto T, Ito H, Nakano Y, Yanase E, Watanabe T, Sadhukhan A, Iuchi S, Kobayashi M, Panda SK, Yamamoto YY, Koyama H, Kobayashi Y (2021) Expression GWAS of PGIP1 Identifies STOP1-Dependent and STOP1-Independent Regulation of PGIP1 in Aluminum Stress Signaling in Arabidopsis. Frontiers in Plant Science 12:774687. https://doi.org/10.3389/fpls.2021.774687 (Impact Factor 4.1)
15. Sadhukhan, A., Kobayashi, Y., Iuchi, S., & Koyama, H. (2021). Synergistic and antagonistic pleiotropy of STOP1 in stress tolerance. Trends in Plant Science, 26(10), 1014–1022. https://doi.org/10.1016/j.tplants.2021.06.011 (Impact Factor 17.3)
14. Sadhukhan A, Agrahari RK, Wu L, Watanabe T, Nakano Y, Panda SK, Koyama H, Kobayashi Y (2020) Expression genome-wide association study identifies that phosphatidylinositol-derived signalling regulates ALUMINIUM SENSITIVE3 expression under aluminium stress in the shoots of Arabidopsis thaliana. Plant Science 110711. https://doi.org/10.1016/j.plantsci.2020.110711 (Impact Factor 4.2)
13. Sadhukhan A, Huo H. (2020) Improvement of Floriculture Crops Using Genetic Modification and Genome Editing Techniques. In: Bhattacharya A., Parkhi V., Char B. (eds) CRISPR/Cas Genome Editing. Concepts and Strategies in Plant Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-42022-2_4. ISBN 978-3-030-42021-5 (Book chapter)
12. Wu L*, Sadhukhan A*, Kobayashi Y, Ogo N, Tokizawa M, Agrahari RK, Ito H, Iuchi S, Kobayashi M, Asai A, Koyama H (2019) Involvement of phosphatidylinositol metabolism in aluminum-induced malate secretion in Arabidopsis. Journal of Experimental Botany 70:3329–3342. * shared first author. https://doi.org/10.1093/jxb/erz179 (Impact Factor 5.6)
11. Sadhukhan A, Enomoto T, Kobayashi Y, Watanabe T, Iuchi S, Kobayashi M, Sahoo L, Yamamoto YY, Koyama H (2019) Sensitive To Proton Rhizotoxicity1 Regulates Salt and Drought Tolerance of Arabidopsis thaliana Through Transcriptional Regulation of CIPK23. Plant and Cell Physiology 60:2113–2126. https://doi.org/10.1093/pcp/pcz120 (Impact Factor 3.9)
10. Sadhukhan A, Koyama H (2019) Role of Reactive Oxygen Species Homeostasis in Root Development and Rhizotoxicity in Plants. Panda SK and Yamamoto YY (eds.), Redox Homeostasis in Plants. Signaling and Communication in Plants. Springer Nature Switzerland AG. 117–136. https://doi.org/10.1007/978-3-319-95315-1_6. ISBN-10: 3319953141. (Book chapter)
9. Sadhukhan A, Kobayashi Y, Nakano Y, Iuchi S, Kobayashi M, Sahoo L, Koyama H (2017) Genome-wide association study reveals that the aquaporin NIP1;1 contributes to variation in hydrogen peroxide sensitivity in Arabidopsis thaliana. Molecular Plant 10:1082–1094. https://doi.org/10.1016/j.molp.2017.07.003 (Impact Factor: 17.1)
8. Daspute AA, Sadhukhan A, Tokizawa M, Kobayashi Y, Panda SK, Koyama H (2017) Transcriptional regulation of aluminum-tolerance genes in higher plants: clarifying the underlying molecular mechanisms. Frontiers in Plant Science 8:1358. https://doi.org/10.3389/fpls.2017.01358 (Impact Factor 4.1)
7. Kobayashi Y∞, Sadhukhan A∞, Tazib T, Nakano Y, Kusunoki K, Kamara MM, Chaffai R, Iuchi S, Sahoo L, Kobayashi M, Hoekenga OA, Koyama H (2015) Joint genetic and network analyses identify loci associated with root growth under NaCl stress in Arabidopsis thaliana. Plant Cell and Environment 39(4): 918–934. https://doi.org/10.1111/pce.12691 ∞ shared first author (Impact Factor 6.0)
6. Behura R, Kumar S, Saha B, Panda MK, Dey M, Sadhukhan A, Mishra S, Alam S, Sahoo DP, Sugla T, Panda SK, Sahoo L (2015) Cowpea (Vigna unguiculata L Walp) In: Wang K (ed) Methods in Molecular Biology: Agrobacterium protocols. Springer, USA 1223:255-64. https://doi.org/10.1007/978-1-4939-1695-5_20. ISBN 1493916947. (Book chapter)
5. Sadhukhan A, Kobayashi Y, Kobayashi Y, Tokizawa M, Yamamoto YY, Iuchi S, Koyama H, Panda SK, Sahoo L (2014) VuDREB2A, a novel DREB2-type transcription factor in the drought-tolerant legume cowpea mediates DRE-dependent expression of stress-responsive genes and confers enhanced drought resistance in transgenic Arabidopsis. Planta 240(3):645-64. (Impact Factor 3.6)
4. Sadhukhan A, Panda SK, Sahoo L (2014) The cowpea RING ubiquitin ligase VuDRIP interacts with transcription factor VuDREB2A for regulating abiotic stress responses. Plant Physiology and Biochemistry 83:51-56. https://doi.org/10.1016/j.plaphy.2014.07.007 (Impact Factor 6.1)
3. Thapa G, Sadhukhan A, Panda SK, Sahoo L (2012) Molecular mechanistic model of plant heavy metal tolerance. Biometals 25:489–505. https://doi.org/10.1007/s10534-012-9541-y (Impact Factor 4.1)
2. Sadhukhan A, Sahoo L, Panda SK (2012) Chemical genomics in plant biology. Indian Journal of Biochemistry and Biophysics 49(3):143–154. PMID: 22803329. (Impact Factor 1.5)
1. Bakshi S, Sadhukhan A, Mishra S, Sahoo L (2011) Improved Agrobacterium-mediated transformation of cowpea via sonication and vacuum infiltration. Plant Cell Reports 30:2281–2292. https://doi.org/10.1007/s00299-011-1133-8 (Impact Factor 5.3)